
Generalized plasma-like permittivity and thermal Casimir force between real metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 13485

(http://iopscience.iop.org/1751-8121/40/44/025)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/44
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 13485–13499 doi:10.1088/1751-8113/40/44/025

Generalized plasma-like permittivity and thermal
Casimir force between real metals

B Geyer1, G L Klimchitskaya1,2 and V M Mostepanenko1,3

1 Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University,
D-04009, Leipzig, Germany
2 North–West Technical University, Millionnaya St 5, St Petersburg, 191065, Russia
3 Noncommercial Partnership ‘Scientific Instruments’, Tverskaya St 11, Moscow, 103905, Russia

Received 23 July 2007, in final form 26 September 2007
Published 16 October 2007
Online at stacks.iop.org/JPhysA/40/13485

Abstract
The physical reasons why the Drude dielectric function is not compatible with
the Lifshitz formula, as opposed to the generalized plasma-like permittivity,
are presented. Essentially, the problem is connected with the finite size of
metal plates. It is shown that the Lifshitz theory combined with the generalized
plasma-like permittivity is thermodynamically consistent.

PACS numbers: 05.30.−d, 77.22.Ch, 12.20.Ds

1. Introduction

In the last few years the Casimir effect [1] received common recognition as one of the most
important subjects of interdisciplinary interest. The Casimir force is of the same nature as
other one-loop vacuum effects of quantum electrodynamics [2]. It arises due to the alteration
of the spectrum of electromagnetic zero-point oscillations by material boundaries. Early
stages of modern experiments and related theory are reflected in [3]. Recent trends go toward
complex experimental and theoretical studies of the Casimir effect, including the applications
to nanotechnology. For this purpose, many classical theoretical results on the subject obtained
within the framework of quantum field theory (see, e.g., monographs [4–6], reviews [3, 7, 8],
proceedings [9] and more recent papers [10, 11]) should be adapted to the case of real material
bodies. Realistic material properties are important also for applications of the Casimir effect
in nanotechnology [12–14].

The basic theory of the van der Waals and Casimir forces between dielectric materials
was proposed by Lifshitz [15]. However, the application of this theory to Drude metals and
semiconductors with sufficiently low charge carrier density met serious problems. Namely, at
first, it was shown [16, 17] that for Drude metals with perfect crystal lattices the Lifshitz theory
violates the Nernst heat theorem. This is connected with the fact that the reflection coefficient
for the transverse electric mode of the electromagnetic field at zero frequency is equal to zero
if the dielectric permittivity behaves as ω−1 when the frequency ω vanishes. For metals with
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impurities the Nernst heat theorem is formally preserved [18]. This inclined the proponents
of the Drude model to believe that it is applicable together with the Lifshitz theory (different
arguments on this problem can be found in [19–22]). However, precision measurements of
the Casimir force [23–26] excluded the Drude model at a 99.9% confidence level.

Another problem arises when the Lifshitz theory is applied to dielectrics or semiconductors
with not too high density of free charge carriers. In this case, the Nernst heat theorem is violated
if the conductivity at zero frequency is taken into account [27–30]. Here, it is the discontinuity
of the transverse magnetic mode at zero frequency, which is responsible for that violation.
Furthermore, it was demonstrated [31, 32] that the inclusion of the conductivity at zero
frequency into the Lifshitz theory leads to a contradiction with experiment. Until recently
there exists not any theoretical approach to the thermal Casimir force which would be in
agreement with both short separation experiments [33, 34] and longer separation experiments
[23–26]. The approach using the usual, nondissipative, plasma model was shown to be
in agreement with longer separation experiment [23–26], but to be in contradiction with
the experiment performed at short separations [33, 34]. The impedance approach [35] was
also found in agreement with longer separation experiments [23–26], but it is simply not
applicable at shorter separations characteristic for the experiment of [33, 34]. Because of this,
the Lifshitz theory at zero temperature by necessity was used for the comparison between the
short separation experiment [33, 34] and theory, even though that experiment was performed
at a room temperature of 300 K.

Recently, a new theoretical approach to the thermal Casimir force between real metals
has been proposed [36] using the generalized plasma-like dielectric permittivity. The latter
includes dissipation processes due to the interband transitions of core electrons but disregards
dissipation due to scattering processes of free electrons. As was shown in [36], the Lifshitz
formula combined with the generalized plasma-like dielectric permittivity is consistent with
both short and long separation experiments. It also exactly satisfies the Kramers–Kronig
relations. However, the question why one should include one type of dissipation (interband
transitions of core electrons) to fit theory to experiment while disregarding another one
(scattering processes of free electrons) remained unresolved.

In this paper, we present and discuss the physical explanation why the Drude dielectric
function cannot be used to describe the thermal Casimir force between metal plates of a finite
area. The idea of that explanation was briefly published first by Parsegian [37], but did not
attract the attention which it deserves. As we show below, the Drude dielectric function is not
compatible with the zero-frequency term of the Lifshitz formula if the area of plates is finite.
We also perform a rigorous analytical proof of the fact that the Casimir entropy calculated
using the generalized plasma-like dielectric permittivity satisfies the Nernst heat theorem.

The paper is organized as follows. In section 2, we explain why the Drude dielectric
function is incompatible with the Lifshitz formula in the case of two parallel metallic plates
of a finite area. Section 3 contains an asymptotic derivation of the analytic expression for the
Casimir entropy in the limit of low temperatures. Here we present a proof for the validity
of the Nernst heat theorem in the Lifshitz theory combined with the generalized plasma-like
dielectric permittivity. Section 4 contains our conclusions and a discussion.

2. Why the Drude dielectric function is not compatible with the Lifshitz formula for
metallic plates of a finite area

In the framework of the Lifshitz theory, the free energy of the fluctuating electromagnetic
field between two electrically neutral plane parallel plates of thickness d at temperature T in
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thermal equilibrium is given by [3, 15]

F(a, T ) = kBT

2π

∞∑
l=0

(
1 − 1

2
δ0l

)∫ ∞

0
k⊥ dk⊥

{
ln
[
1 − r2

TM(ξl, k⊥) e−2aql
]

+ln
[
1 − r2

TE(ξl, k⊥) e−2aql
]}

. (1)

Here a is the separation distance between the plates, kB is the Boltzmann constant,
ξl = 2πkBT l/h̄ are the Matsubara frequencies defined for any l = 0, 1, 2, . . ., and k⊥ = |k⊥|
is the magnitude of the wave vector projection onto the plane of the plates. The reflection
coefficients for the two independent polarizations of the electromagnetic field (transverse
magnetic, TM, and transverse electric, TE) are expressed [38] in terms of the frequency-
dependent dielectric permittivity, ε(ω), along the imaginary frequency axis:

rTM(ξl, k⊥) = ε2
l q

2
l − k2

l

ε2
l q

2
l + k2

l + 2qlklεl coth(kld)
,

rTE(ξl, k⊥) = k2
l − q2

l

q2
l + k2

l + 2qlkl coth(kld)
,

(2)

where

ql =
√

k2
⊥ +

ξ 2
l

c2
, kl =

√
k2
⊥ + εl

ξ 2
l

c2
, εl = ε(iξl). (3)

Equation (1) was originally derived [15] for dielectric plates of an infinite area. However,
it is commonly used for plates of the finite area S under the condition a � √

S. If this
condition is satisfied, corrections to equation (1) due to the finiteness of the plate area are
shown to be negligibly small [3, 39] for both dielectric and ideal metal plates. Below we show
that this is not the case for metal plates described by the Drude dielectric function where the
presence of a real current of conduction electrons leads to a crucially new physical situation.

Papers [18, 21, 22, 40] describe metallic plates by using the dielectric permittivity of the
Drude model,

εD(ω) = 1 − ω2
p

ω(ω + iγ )
, (4)

where ωp is the plasma frequency and γ is the relaxation parameter. As is correctly stated
by Parsegian (see [37, p 254]), ‘this is valid only in the case of an effectively infinite medium
where no walls limit the flow of charges.’ To gain a better understanding of this statement, we
derive equation (4) starting from Maxwell equations in an unbounded nonmagnetic metallic
medium

rot B = 1

c

∂E

∂t
+

4π

c
σ0E, div B = 0,

rot E = −1

c

∂B

∂t
, div E = 0.

(5)

Here, the electric current density j = σ0E is induced in a metal under the influence of
external sources, and σ0 is the conductivity at zero frequency. Physically the demand that the
medium is unbounded means that it should be much larger than the extension of the wave
fronts of electromagnetic waves coming from external sources (i.e., of zero-point oscillations
and thermal photons).

Solutions of equation (5) can be found in the form of monochromatic waves,

E = Re[E0(r) e−iωt ], B = Re[B0(r) e−iωt ], (6)



13488 B Geyer et al

where E0(r) and B0(r) satisfy equations

	E0(r) + k2E0(r) = 0, 	B0(r) + k2B0(r) = 0, (7)

following from (5) with

k2 = ω2

c2
+ i

4πσ0ω

c2
≡ εn(ω)ω2

c2
. (8)

Here the dielectric permittivity of the normal skin effect, εn(ω), is introduced

εn(ω) = 1 + i
4πσ0

ω
. (9)

This equation is applicable at not too high frequencies (the region of the normal skin effect)
where the relation j = σ0E is valid. The Drude model extends the applicability of (9) to higher
frequencies, up to the plasma frequency, by making the following replacement in equation (9):

σ0 → σ(ω) =
σ0
(
1 + iω

γ

)
1 + ω2

γ 2

. (10)

Substituting (10) in (9) and taking into account that σ0 = ω2
p

/
(4πγ ) [41] we recover the

dielectric permittivity of the Drude model (4). At sufficiently high frequencies γ � ω < ωp

(the region of infrared optics) one can neglect unity as compared to ω/γ and ω2/γ 2 in (10).
Then (4) and (10) lead to the so-called free electron plasma model

εp = 1 − ω2
p

ω2
, σ (ω) = iσ0γ

ω
. (11)

Thus, the plasma model is characterized by pure imaginary conductivity. In the opposite limit
ω � γ the unity in both numerator and denominator of (10) dominate over ω/γ and ω2/γ 2

leading to σ(ω) = σ0. This converts the dielectric permittivity of the Drude model (4) in
the dielectric permittivity of the normal skin effect (9) characterized by real conductivity of
conduction electrons σ0.

The total current in the framework of the Drude model (4) is given by

j tot(r, t) = Re
[
− iω

4π
εD(ω)E0(r) e−iωt

]

= ω

4π

(
1 − ω2

p

ω2 + γ 2

)
Im[E0(r) e−iωt ] +

σ0γ
2

ω2 + γ 2
Re[E0(r) e−iωt ]. (12)

The first term on the right-hand side of this equation has the meaning of the displacement
current, whereas the second term, in accordance to (6), is proportional to the physical electric
field E = E(r, t) and describes the real current of conduction electrons. Under the condition
γ � ω < ωp, i.e., in the region of infrared optics, the first term dominates. This is the
displacement current of the plasma model with a pure imaginary conductivity (11). Under the
opposite condition ω � γ , i.e., in the region of the normal skin effect, the second term on
the right-hand side of (12), i.e., the real physical current of conduction electrons dominates.

After the above discussion on the derivation of the Drude model, we now return to the role
played by the finite size of the plates. Let us consider plane waves of zero-point oscillations
and thermal photons in between the plates incident on their interior boundary surfaces. It is
common knowledge (see, e.g., [42, 43]) that charge carriers in a conductor move in response
to electromagnetic oscillations. For plates of a finite area, the application condition for the
derivation of the Drude model is formally violated because the extension of the oscillation
wave fronts is much larger than the size of any conceivable plates. However, if the frequencies
of oscillations are high enough (recall that at room temperature the first Matsubara frequency
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is equal to ξ1 ≈ 2.47 × 1014 rad s−1, and all others with l � 1 are, respectively, higher) there
is no accumulation of charges on the side boundary surfaces of finite metal plates. First, at
so high frequencies the real current of conduction electrons [given by the second term on the
right-hand side of (12)] is small in comparison with the displacement current. Second, a high-
frequency electric field quickly changes its direction. As a result, electric charges which are
accumulated on the sides of a plate change their sign many times during any reasonable time of
force measurement. This leads to practically zero mean surface charge. Thus, equations (4),
(7), (8) and (12) remain macroscopically valid.

The situation changes drastically when the contribution from the zero Matsubara frequency
ξ0 = 0 is considered. The plane wave of zero frequency should be understood as the limit of
plane waves with some low frequencies ξ in the case that ξ → 0. As was mentioned above,
the extension of a wave front far exceeds the size of the plates. If it is remembered that the
period of the wave of vanishing frequency goes to infinity, the Casimir plates are found in
practically constant electric and magnetic fields. As is described in textbooks on classical
electrodynamics (see, e.g., [42, 43]), in a quasistatic case the propagation direction of a plane
wave inside a metal is approximately perpendicular to its surface independently of the angle
of incidence. Thus, a short-lived current which arises under the influence of a constant electric
field in the plane of plates immediately gives rise to some nonzero surface charge densities
ρ of opposite signs accumulated on opposite sides of the plates. The electric field generated
by these charges precisely compensates the electric field of zero frequency inside a metal. As
a result, the electric field inside the metal is exactly equal to zero [42, 43]. As to the space
between the plates, the resulting field there is the superposition of an approximately constant
field of external sources and of the field generated by the charge distribution on the plate sides.

From what has been said, it appears that Maxwell equation (5) and all consequences
obtained from them are not applicable in the case of plane waves of zero frequency. In that
case for finite plates not only a nonzero-induced current must be taken into account but also
a nonzero-induced charge density generated by this current which, however, is omitted in
(5). As was noted by Parsegian (see [37, p 254]), ‘conductors must be considered case by
case corresponding to the limitations imposed by boundary surfaces.’ Here we demonstrate
that these limitations arise from the substitution of the Drude dielectric function (which is
obtained for unbounded medium) in the zero-frequency term of the Lifshitz formula. Such
substitution is in contradiction with electrodynamics, because, as was shown above, the Drude
model admits a nonzero current of conduction electrons, whereas electrodynamics ascertains
that the current of conduction electrons inside a finite metal plate placed in a plane wave of
zero frequency must be equal to zero.

We emphasize that the time interval during which charges on the sides of finite plates are
accumulated and the total electric field in a metal turns into zero is extremely short. To make
sure that this is the case we describe the dynamic process of charge accumulation on the sides
of the plates by a simple model:

dρ(t)

dt
= σ0Etot(t), Etot(t) = E − Eρ(t), (13)

where E is the constant electric field along the plates and Eρ(t) is the field produced by the
surface charge density till the moment t. For the order of magnitude estimation, it is sufficient
to represent Eρ(t) as the field in a plane capacitor: Eρ(t) = 4πρ(t). Then we arrive at the
following solution:

ρ(t) = E

4π
(1 − e−4πσ0t ). (14)

As an example, for Au it holds 4πσ0 = 3.5 × 1018 s−1 and, thus, even after a very short time
lapse of t = 10−18 s, ρ(t) practically achieves the maximum value ρ(∞) = E/(4π). Then
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from equation (13) it follows that the total field inside a metal vanishes, Etot(∞) = 0, as it
should be.

Thus, the substitution of the Drude dielectric function in the zero-frequency term of the
Lifshitz formula is self-contradictory. As was recalled in the introduction, for the Drude model
it holds rTE(0, k⊥) = 0. This means that the TE field of zero frequency completely penetrates
into a metal. For metal plates of finite size, this unavoidably leads to instant accumulation of
induced charges on the plate sides and vanishing of both an electric field and a current inside a
metal. However, the Lifshitz formula is derived for neutral plates without any nonzero surface
charge densities. At the same time, the Drude model admits the presence of a nonzero-induced
current. Because of this, it is not surprising that the Lifshitz theory in combination with the
Drude model violates the Nernst heat theorem for perfect crystal lattices [16, 17] and was
found to be in contradiction with several experiments [23–26]. If metal plates were really
infinite (as is formally suggested in the derivation of the Lifshitz formula) the Drude model
would be applicable including the zero-frequency term. This, however, is an unphysical case
and it cannot be considered as a closed system where the laws of thermodynamics must be
valid.

The above discussion uses the formulation of the Lifshitz formula (1) in terms of the
imaginary frequency axis. However, direct computations using the formulation in terms of
real frequencies show [44] that the region of sufficiently low real frequencies results in precisely
the same contribution to the Casimir-free energy as does the zero Matsubara frequency. As
a result, all above conclusions are equally applicable to the contribution into the free energy
from the zero-frequency term in the Matsubara formulation and to the equivalent contribution
from low real frequencies in the formalism of real frequency axis.

By contrast with the Drude model, the plasma dielectric function (11) does not lead to
a real current of conduction electrons and does not result in accumulation of charges on the
side surfaces of finite metal plates. The free electron plasma model in combination with the
Lifshitz formula satisfies the Nernst heat theorem [16, 17]. However, as was mentioned in
the introduction, it is in disagreement with short separation experiments on the measurement
of the Casimir force. Below we demonstrate that the generalized plasma-like permittivity
[36], which is in agreement with all experiments performed up to date also satisfies the
requirements of thermodynamics. Thus, it is becoming the best-known candidate for the
adequate description of metals in the framework of the Lifshitz theory.

3. Thermodynamic test for the generalized plasma-like dielectric permittivity

The generalized plasma-like dielectric permittivity can be presented in the form [36]

ε(ω) = 1 − ω2
p

ω2
+ A(ω), (15)

where the additional term A(ω) takes into account the interband transitions of core electrons.
Explicitly it is given by

A(ω) =
K∑

j=1

fj

ω2
j − ω2 − igjω

, (16)

where ωj �= 0 are the resonant frequencies of oscillators describing the core electrons, gj are
the respective relaxation parameters, fj are the oscillator strengths and K is the number of
oscillators. The values of oscillator parameters for different materials can be found in [37].
Recently the precise determination of these parameters for Au was performed in [26]. Note
that the generalized plasma model does not include relaxation of the free conduction electrons.
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The latter are described by an oscillator with zero resonant frequency, ω0 = 0, which is not
contained in (16) but is explicitly included in (15) with g0 = 0 and f0 = ω2

p. Thus, similar
to the usual plasma model (11), the generalized plasma-like permittivity (15) and (16) admits
only the displacement current and does not allow for the accumulation of charges on the sides
of finite plates. Because of this, the generalized plasma-like permittivity is compatible with
the Lifshitz formula which is derived for neutral plates with zero charge distributions.

In [36], it was shown that the permittivity (15) and (16) precisely satisfies the Kramers–
Kronig relations. Here we prove that the Lifshitz formula combined with the generalized
plasma-like permittivity is in agreement with the Nernst heat theorem and thus withstands the
thermodynamic test.

To find the asymptotic behavior of the Casimir-free energy and entropy at low temperature,
we first present equations (1), (2) and (15), (16) in terms of the following dimensionless
parameters,

ω̃p = ωp

ωc

≡ 1

α
, ζl = ξl

ωc

≡ τ l, y =
√

4a2k2
⊥ + ζ 2

l ,

γj = ω2
c

ω2
j

, δj = ωcgj

ω2
j

, Cj = fj

ω2
j

,

(17)

where ωc ≡ c/(2a) is the so-called characteristic frequency of the Casimir effect. In terms of
new variables, the Lifshitz formula (1) takes the form

F(a, T ) = h̄cτ

32π2a3

∞∑
l=0

(
1 − 1

2
δ0l

)∫ ∞

ζl

y dy
{
ln
[
1 − r2

TM(ζl, y) e−y
]

+ ln
[
1 − r2

TE(ζl, y) e−y
]}

. (18)

The reflection coefficients (2) are given by

rTM(ζl, y) =
(
ε2
l − 1

)(
y2 − ζ 2

l

)
(εl + 1)y2 + (εl − 1)ζ 2

l + 2εlyhl(y) coth
[

d
2a

hl(y)
] ,

rTE(ζl, y) = (εl − 1)ζ 2
l

2y2 + (εl − 1)ζ 2
l + 2yhl(y) coth

[
d
2a

hl(y)
] ,

(19)

where

hl(y) = [
y2 + (εl − 1)ζ 2

l

]1/2
. (20)

The generalized plasma-like dielectric permittivity along the imaginary frequency axis can be
presented as

εl = ε(iζl) = 1 +
ω̃2

p

ζ 2
l

+ Al = 1 +
1

α2ζ 2
l

+ Al, (21)

where

Al = A(ζl) =
K∑

j=1

Cj

1 + γj ζ
2
l + δj ζl

. (22)

Using the Abel–Plana formula [3, 5]

∞∑
l=0

(
1 − 1

2
δ0l

)
F(l) =

∫ ∞

0
F(t) dt + i

∫ ∞

0
dt

F (it) − F(−it)

e2πt − 1
, (23)
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where F(z) is an analytic function in the right half of the complex plane, we can rearrange
(18) to the form

F(a, T ) = E(a) + 	F(a, T ). (24)

Here, the energy of the Casimir interaction at zero temperature is given by

E(a) = h̄c

32π2a3

∫ ∞

0
dζ

∫ ∞

ζ

f (ζ, y) dy (25)

and the function f (ζ, y) is defined as

f (ζ, y) = y ln
[
1 − r2

TM(ζ, y) e−y
]

+ y ln
[
1 − r2

TE(ζ, y) e−y
]
. (26)

The thermal correction to the Casimir energy is expressed as follows:

	F(a, T ) = ih̄cτ

32π2a3

∫ ∞

0
dt

F (iτ t) − F(−iτ t)

e2πt − 1
, (27)

where

F(x) =
∫ ∞

x

dy f (x, y). (28)

The behavior of the thermal correction (27) and (28) at low temperature will be the subject of
our further consideration.

Perturbation expansion can be performed in analogy to papers [16, 17, 45, 46]. At first,
we expand the reflection coefficients (19) with ζl replaced by ζ in powers of parameter α

defined in (17) preserving all powers up to the fourth inclusive. The parameter α can be
identically presented as α = λp/(4πa), where λp is the plasma wavelength. This means that
α � 1 at all separation distances between the plates larger than λp. As is seen from (26), it is
more convenient to expand the logarithmic functions containing the reflection coefficients in
(26) multiplied by the variable y. The results are as follows:

y ln
[
1 − r2

TM(ζ, y) e−y
] = y ln(1 − e−y) + α

4ζ 2

ey − 1
− α2 8eyζ 4

y(ey − 1)2

+ α3 2ζ 2{2ζ 4(3ey + 1)2 + 3(ey − 1)2y2[y2 − 2ζ 2 − ζ 2A(ζ )]}
3y2(ey − 1)3

−α4 8eyζ 4{2ζ 4(ey + 1)2 + (ey − 1)2y2[y2 − 2ζ 2 − ζ 2A(ζ )]}
y3(ey − 1)4

,

(29)

y ln
[
1 − r2

TE(ζ, y) e−y
] = y ln(1 − e−y) + α

4y2

ey − 1
− α2 8y3ey

(ey − 1)2

+ α3 2y2[−3(ey − 1)2ζ 2A(ζ ) + y2(15e2y + 18ey − 1)]

3(ey − 1)3

−α4 8y3ey[−(ey − 1)2ζ 2A(ζ ) + y2(e2y + 6ey + 1)]

(ey − 1)4
.

It is significant that these expansions do not depend on d (the thickness of the plates)
contained in (19). This is because the factor in the denominator of (19),

coth

[
d

2a
hl(y)

]
= coth

(
d

2a

√
y2 +

1

α2
+ Alζ

2
l

)

=
1 + exp

(− d
aα

√
1 + α2y2 + α2Alζ

2
l

)
1 − exp

(− d
aα

√
1 + α2y2 + α2Alζ

2
l

) , (30)
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behaves asymptotically as

1 + 2 exp

(
− d

aα

)
+ · · · (31)

when α goes to zero. Thus, this factor could only contribute exponentially small terms in the
expansion (29) providing the plate thickness d is much larger than the penetration depth of
electromagnetic oscillations into the metal [recall that 2aα = λp/(2π)]. Under this condition,
the perturbation expansions (29) are common for two semispaces and for two plates of finite
thickness. We note also that terms in (29) of order α0, α and α2 do not contain contributions
from the core electrons. They are the same as for the usual free electron plasma model (11).
The contributions from the core electrons are contained only in the terms of order α3 and α4

in (29).
The parameter τ defined in (17) can be identically represented as

τ = 2π
T

Teff
, kBTeff ≡ h̄c

2a
. (32)

Here Teff is the so-called effective temperature. For example, at a separation distance of a = 1µ

m Teff ≈ 1145 K. Below we will consider the limiting case of low temperatures T � Teff .
The contribution from the terms of order α0, α and α2 in (29) into the thermal correction
(26) was found in [45, 46] where the usual free electron plasma model was considered. This
contribution is given by

	Fp(a, T ) = − h̄c

32π2a3

{
ζ(3)

4π2
τ 3 − 1

360
τ 4 + α

[
ζ(3)

π2
τ 3 − 1

45
τ 4

]
− α2 6ζ(5)

π2
τ 5

}
,

where ζ(z) is the Riemann zeta function. As was shown in [46], the terms in (33) of order α0

and α do not contain corrections of order τn with n � 5. They contain only the exponentially
small corrections of order exp(−2π/τ).

Now we deal with the terms of order α3 and α4 in (29) which contain the contributions
from the core electrons. From (26), (28) and (29) the respective functions F (3)(x) and F (4)(x)

are given by

F (3)(x) = −2α3

{
[A(x) − 1]x2

∫ ∞

x

y2 dy

ey − 1
− 1

3

∫ ∞

x

y4(15e2y + 18ey − 1)

(ey − 1)3

+ [A(x) + 2]x4
∫ ∞

x

dy

ey − 1
− 2

3
x6
∫ ∞

x

(3ey + 1)2

y3 (ey − 1)3 dy

}
,

(34)

F (4)(x) = 8α4

{
A(x)x2

∫ ∞

x

y3ey dy

(ey − 1)2
−
∫ ∞

x

y5
(
e2y + 6ey + 1

)
ey dy

(ey − 1)4

+ [A(x) + 2]x6
∫ ∞

x

ey dy

y (ey − 1)2 − x4
∫ ∞

x

yey dy

y3(ey − 1)2

− 2x8
∫ ∞

x

ey(ey + 1)2

y3(ey − 1)4
dy

}
.

Calculating all integrals in (34) as asymptotic expansions at small x (see the appendix for
details) we arrive at
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F (3)(iτ t) − F (3)(−iτ t) = −2iα3


2τ 3t3ζ(3)

K∑
j=1

Cjδj + πτ 4t4


 K∑

j=1

Cj + 2




 ,

F (4)(iτ t) − F (4)(−iτ t) = 8iα4


8τ 3t3ζ(3)

K∑
j=1

Cjδj + πτ 4t4


 .

(35)

The terms omitted in (35) are of order τ 5.
Substituting (35) in (27) and integrating with respect to t, we obtain the contribution to

the thermal correction from the terms of order α3 and α4:

	Fg(a, T ) = − h̄c

32π2a3


−α3


ζ(3)

60

K∑
j=1

Cjδj τ
4 +

3ζ(5)

2π4


 K∑

j=1

Cj + 2


 τ 5




+ α4


4ζ(3)

15

K∑
j=1

Cjδj τ
4 +

6ζ(5)

π4
τ 5




 . (36)

Total Casimir’s free energy computed using the generalized plasma-like permittivity can
be now found from (24), (33) and (36):

F(a, T ) = E(a) + 	Fp(a, T ) + 	Fg(a, T ). (37)

Taking into account (32), it can be represented in the form

F(a, T ) = E(a) − h̄cζ(3)

16πa3

(
T

Teff

)3

×

1 + 4α − π3

45ζ(3)

T

Teff


1 + 8α + 6ζ(3)α3

K∑
j=1

Cjδj − 96ζ(3)α4
K∑

j=1

Cjδj




− 96π2ζ(5)

ζ(3)

(
T

Teff

)2

α2


1 +

α

4π2


 K∑

j=1

Cj + 2


− α2

π2




 . (38)

Here one can see that the free energy calculated using the generalized plasma-like permittivity
contains the correction of order (T /Teff)

4 not only in the terms of order α0 and α (as in the
usual plasma model) but also in the third- and fourth-order expansion terms in α. In the usual
plasma model, the terms of order α3 and α4 contain the thermal corrections only of order of
(T /Teff)

5 and higher [45]. To estimate the relative role of the additional terms arising due to
the use of the generalized plasma-like permittivity, one can use the parameters of oscillator
terms in (22) for Au [26]. This results in

6∑
j=1

Cj = 6.3175,

6∑
j=1

Cjδj =
{

0.272, a = 200 nm,

0.109, a = 500 nm.
(39)

From (38) it is easy to find the asymptotic behavior of the Casimir entropy

S(a, T ) = −∂F(a, T )

∂T
(40)
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at low temperature. The result is

S(a, T ) = 3ζ(3)kB

8πa2

(
T

Teff

)2

×

1 + 4α − 4π3

135ζ(3)

T

Teff


1 + 8α + 6ζ(3)α3

K∑
j=1

Cjδj − 96ζ(3)α4
K∑

j=1

Cjδj




− 160π2ζ(5)

ζ(3)

(
T

Teff

)2

α2


1 +

α

4π2


 K∑

j=1

Cj + 2


− α2

π2




 . (41)

As is seen from (41),

S(a, T ) → 0 when T → 0, (42)

i.e., the entropy goes to zero (and remains positive) when the temperature vanishes. This
means that the Nernst heat theorem is satisfied and the Lifshitz theory combined with the
generalized plasma-like dielectric permittivity withstands the thermodynamic test.

4. Conclusions and discussion

In the foregoing we have continued the elaboration of new theoretical approach to the thermal
Casimir force based on the Lifshitz formula combined with the generalized plasma-like
dielectric permittivity [36]. In the first part of the paper (section 2) the physical reasons
were presented why the Drude dielectric function is not applicable in the case of finite
metallic plates. It was shown that for the validity of the Drude model the nonzero current
of conduction electrons must exist, whereas the surface charge densities must be equal to
zero. Both these conditions are shown to be violated when the plane wave of electromagnetic
oscillations of vanishing frequency falls on a finite metal plate. In this case the electric
field and current of conduction electrons practically instantaneously turn into zero. This is
accompanied by the accumulation of charges on the sides of plates. Not only the Drude
dielectric function, but also the Lifshitz formula are not applicable to this physical situation.
In contrast, the generalized plasma-like permittivity leads to only a displacement current and
does not result in the accumulation of surface charges. The obtained results furnish insights
into the long-debated problem why the Lifshitz theory combined with the Drude dielectric
function results in contradictions with thermodynamics and experiment. It becomes clear also
why the generalized plasma-like permittivity, which does not include the relaxation processes
of conduction electrons, is consistent with all available measurements of the Casimir force at
both short and large separations.

Recent paper [47] also argues that the finite size effects of the conductors may play
an important role in the problem of the thermal Casimir effect. This was illustrated in the
simplified case of two wires of finite length described by the Drude model and interacting
through the inductive coupling between Johnson currents. If the capacitive effects associated
with the end points of the wires are not taken into account, the thermal interaction between
the wires leads to the violation of the Nernst heat theorem. If the capacitive effects were taken
into consideration, the agreement with thermodynamics is restored [47].

To conclusively establish the applicability of the generalized plasma-like permittivity in
the theory of the thermal Casimir force between metals, in section 3 we have performed the
thermodynamic test of this model. We have analytically found the asymptotic behavior of
both the Casimir-free energy and Casimir entropy at low temperature. This was done using
the perturbation theory in two small parameters. The obtained new expressions generalize the
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previously known ones (found for the usual free electron plasma model which does not take
dissipation into account). When the oscillator parameters describing the core electrons go to
zero, the newly obtained expressions for the Casimir’s free energy and entropy go into those
found for the usual plasma model. The Casimir entropy at low temperature derived using
the generalized plasma-like permittivity is positive and takes zero value at zero temperature.
Thus, the Nernst heat theorem is satisfied.

To conclude, the generalized plasma-like permittivity provides a good basis in agreement
with thermodynamics and experiment for the description of the thermal Casimir force between
metallic plates of finite size using the standard Lifshitz theory. A more fundamental approach
to the resolution of this problem would require, in accordance with Parsegian’s insight [37], the
consideration from the very beginning of finite plates and charging of their boundary surfaces.
This, however, goes far beyond the scope of the Lifshitz theory.
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Appendix

Here we derive equation (35), where functions F (3)(x) and F (4)(x) are defined in (34).
The first integral in the definition of F (3)(x) converges when x → 0 and can be calculated

as

I
(3)
1 (x) ≡

∫ ∞

x

y2 dy

ey − 1
= 2Li3(e

−x) + 2xLi2(e
−x) − x2 ln(1 − e−x)

= 2ζ(3) − x2

2
+

x3

6
− x4

48
+ O(x6), (A.1)

where Lin(z) is the polylogarithm function [48]. Expanding the function A(x) defined in (22)
in powers of x and using (A.1) we arrive at

[A(x) − 1] x2I
(3)
1 (x) = −2ζ(3)x2 +

x4

2
+ 2ζ(3)

K∑
j=1

Cjx
2 − 2ζ(3)

K∑
j=1

Cjδjx
3

−

1

2

K∑
j=1

Cj − 2ζ(3)

K∑
j=1

Cjδ
2
j + 2ζ(3)

K∑
j=1

Cjγj


 x4 + O(x5), (A.2)

From (A.2), only the term proportional to x3 contributes to (35).
The second integral in the definition of F (3)(x) in (34) also converges when x → 0. It

can be found in the form

I
(3)
2 (x) ≡

∫ ∞

x

y4(15e2y + 18ey − 1)dy

(ey − 1)3
= 15

∞∑
n=1

n2
∫ ∞

x

y4e−ny dy

+
∫ ∞

x

y4e−2y dy

(1 − e−y)2 = −16
x2

2
+

x4

5
+ O(x5). (A.3)

This does not contribute to (35) in the perturbation orders under consideration.
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The third integral in F (3)(x),

I
(3)
3 (x) ≡

∫ ∞

x

e−y dy

1 − e−y
= −ln(1 − e−x), (A.4)

diverges when x goes to zero. It should be, however, multiplied by [A(x) + 2] x4 with the
result

[A(x) + 2] x4I
(3)
3 (x) = −


 K∑

j=1

Cj + 2


x4 ln x +

K∑
j=1

Cjδjx
5 ln x + O(x5). (A.5)

Only the first term on the right-hand side of (A.5) contributes to (35). This contribution is
simply found when taken into account that

ln(iz) − ln(−iz) = iπ. (A.6)

The last, fourth, integral in the definition of F (3)(x), also diverges when x goes to zero. It
can be identically represented in the form

I
(3)
4 (x) ≡

∫ ∞

x

e−y(3 + e−y)2

y2 (1 − e−y)3 dy = 16
∫ ∞

x

e−y

y5
dy + 16

∫ ∞

x

e−y

y4
dy

+ 9
∫ ∞

x

e−y

y3
dy +

19

6

∫ ∞

x

e−y

y2
dy +

41

60

∫ ∞

x

e−y

y
dy

+
∫ ∞

x

e−y

y2

[
(3 + e−y)2

(1 − e−y)3 − 16

y3
− 16

y2
− 9

y
− 19

6
− 41y

60

]
dy. (A.7)

The last integral on the right-hand side of (A.7) converges when x → 0. It does not contribute
to the perturbation orders of our interest after the multiplication by x5. As a result, we arrive
at

x6I
(3)
4 (x) = x6

[
16�(−4, x) + 16�(−3, x) + 9�(−2, x)

+
19

6
�(−1, x) +

41

60
�(−0, x)

]
+ O(x6), (A.8)

where �(n, x) is the incomplete gamma function [49]. Using the identity [49]

�(−n, x) = (−1)n

n!

[
�(0, x) − e−x

n−1∑
m=0

(−1)m
m!

xm+1

]
, (A.9)

where n = 1, 2, . . . , and the asymptotic relation

�(0, x) = −γ − ln x + x − x2

4
+

x3

18
+ O(x4) (A.10)

with Euler’s constant γ = 0.577 216, we finally obtain

x6I
(3)
4 (x) = 4x2 +

x4

2
+ O(x5). (A.11)

This evidently does not contribute to (35).
As a result, by using (A.2) and (A.5) we obtain the first equation in (35).
Now we consider the derivation of the second equation in (35) containing the function

F (4)(x) defined in (34). The first integral in F (4)(x),

I
(4)
1 (x) ≡

∫ ∞

x

y3e−y

(1 − e−y)2 dy, (A.12)
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converges when x goes to zero. It is calculated in analogy to (A.1). As a result the following
expansion is obtained:

A(x)x2I
(4)
1 (x) = 6ζ(3)

K∑
j=1

Cjx
2 − 6ζ(3)

K∑
j=1

Cjδjx
3

−

1

2

K∑
j=1

Cj − 6ζ(3)

K∑
j=1

Cjδ
2
j + 6ζ(3)

K∑
j=1

Cjγj


 x4 + O(x5). (A.13)

The second term on the right-hand side of (A.13) contributes to (35).
The second integral in F (4)(x) also converges when x goes to zero. It can be calculated

similar to I
(3)
2 (x) in (A.2) and does not contain odd powers of x lower than x5. Thus, this

integral does not contribute to (35).
The third and fifth integrals in the definition of F (4)(x), (34), diverge in the limit x → 0.

However, by calculating them similar to I
(3)
4 (x) in (A.7)–(A.10) and multiplying the results

by x6 and x8, respectively, we find that both these integrals do not contribute to (35).
The fourth integral in F (4)(x) can be calculated as follows:

I
(4)
4 (x) ≡

∫ ∞

x

y e−y dy

(1 − e−y)2
= −ln(1 − e−x) +

x e−x

1 − e−x
. (A.14)

It diverges when x goes to zero. After multiplication by x4 one obtains

x4I
(4)
4 (x) = x2 − x4 ln x + O(x6). (A.15)

The second term on the right-hand side of (A.15) contributes to (35).
Using (A.13) and (A.15) we obtain the second equation in (35).
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